
MLS+CP for the hybrid flowshop scheduling problem

M. Sevaux1, A. Jouglet2 and C. Oğuz3

1. LESTER - University of South-Brittany, Lorient - FRANCE

marc.sevaux@univ-ubs.fr

2. HEUDIASYC - Université de Technologie de Compiègne - FRANCE

antoine.jouglet@hds.utc.fr

3. Koç University, Istanbul - TURKEY

coguz@ku.edu.tr

Abstract: A constraint programming based branch-and-bound algorithm is embedded into a memetic
algorithm to solve multiprocessor task scheduling problem in hybrid flow-shop environments. Both meth-
ods are able to solve the problem by themselves but the combination of the two allows to solve larger
problem in a shorter amount of time. Computational experiments are conducted on a large set of in-
stances and the resulting memetic algorithm gives the best results so far.

Keywords: Memetic algorithm - Constraint Programming - Hybrid flowshop

1 Introduction

The hybrid flowshop problem can be stated as follows: a set of jobs J = {1, 2, . . . , n} has to be
sequenced in a flowshop environment with k stages. For each stage i a set Mi = {1, 2, . . . ,mi}
of identical processors is considered. A job consists in a sequence of k tasks, one task denoted
by Tij for each stage. Each task within a job requires one or several processors simultaneously
to be proceeded (processor requirement for task Tij will be denoted by sizeij). The processing
time of task Tij will be denoted by pij .

The goal is to minimise the makespan Cmax, i.e., the completion time of the last job at the
last stage.

2 Previous work

Based on previous results [2], we re-define a incremental version of a genetic algorithm (GA)
with the best combination of components (mutation and crossover operators).

An initial population is generated randomly and few good solutions are provided by list
scheduling heuristics. A solution is coded as a permutation of the jobs at the first stage and a
decoding algorithm (based on a generalized list scheduling algorithm) is used to sequence the
jobs and obtain a feasible schedule. Selection is done by binary tournament. The NXO crossover
and insertion mutation operators are taken from [2].

3 Constraint programming

In Constraint Programming, the hybrid flowshop problem can be efficiently encoded in terms of
variables and constraints in the following way [1]. Let Tij be the task i of job j. For each task
Tij two variables are introduced, start(Tij) and end(Tij). They represent the start time and the
end time of the task Tij , respectively.

Temporal relations between tasks are expressed by linear constraints between the start and
the end variables of tasks. Then, the precedence between two successive tasks Tij and Ti+1 j of
the same job j is modeled by the linear constraint end(Tij) ≤ start(Ti+1 j). Such constraints
are easily propagated using a standard arc-B-consistency algorithm.

1



Cumulative resource constraints represent the fact that tasks require some amount of a re-
source throughout their execution. For our problem, the propagation of the resource constraints
mainly consists of maintaining arc-B-consistency on the formula

∀i ∈ {1, 2, . . . , k}, ∀t,
∑

j∈{1,2,...,n}
start(Tij)≤t<end(Tij)

sizei,j ≤ mi

In other words, the sum of task’s requirement at stage i and at time t has to be lower than the
number of available processors mi.

The makespan criterion is represented by an additional variable Cmax. Its value is determined
by Cmax = maxi,j end(Tij). Arc-B-Consistency is used to propagate this constraint.

To find an optimal solution, we solve successive variants of the decision problem, i.e., a
problem in which a constraint on the makespan value is added to the problem (Cmax ≤ UB).
For the decision problem, the constraint programming approach returns a feasible schedule for
this maximum makespan value (UB) or fails. Each time a feasible solution is found (with
possibly a new upper bound UB′), the maximum makespan value UB′ is decreased by one unit
and the branch and bound algorithm is restarted.

4 Memetic algorithm

Algorithm 1 describes the sketch of the memetic algorithm (MA) combined with the constraint
propagation algorithm. First, an initial population of npop individuals is generated and two
remarkable individuals (namely best and worst) are identified. The crossover operation is per-
formed using the NXO operator and one offspring is generated. If the quality of the offspring
improves the best solution, the mutation is not performed at this iteration, otherwise the mu-
tation is performed with probability pm. If the new current solution improves the best solution
or with a probability phs, we apply the constraint programming search. The new individual is
inserted in the population if it at least improves the worst individual. To keep a population of
a fixed size we have to remove one individual.

Algorithm 1: Memetic algorithm
Generate an initial population P of npop individuals1

Identify best (b) and worst (w) individuals2

while Stopping conditions are not met do3

Selection: p1 and p2 from P by binary tournament4

Crossover : p1 ⊗ p2 → c5

if f(c) ≥ f(b) then6

Mutation: mutate c at pm rate7

endif8

if f(c) < f(b) or with probability phs then9

CP Search: apply the CP Search to c10

endif11

if f(c) ≥ f(w) then12

Discard c13

else14

Select r by reverse binary tournament15

c replaces r in P16

endif17

endw18

2



Table 1: Comparing Cmax average values
Type 1 instances Type 2 instances

k n GA CP MA GA CP MA
2 5 267.6 267.0 267.0 256.4 253.5 253.5

10 451.1 451.1 451.1 426.3 422.0 422.1
20 876.5 889.8 877.7 809.5 832.5 807.6
50 2048.5 2087.0 2046.1 1731.8 1794.1 1722.2
100 4351.5 4417.7 4348.6 3242.5 3325.9 3215.0

5 5 472.1 466.6 466.6 423.8 418.4 418.4
10 648.4 637.8 637.8 606.8 596.8 594.9
20 1077.7 1151.0 1070.3 950.9 1066.5 945.3
50 2574.8 2680.7 2571.7 1971.7 2134.1 1960.7
100 4755.9 4868.5 4746.9 3822.3 3965.2 3802.0

8 5 641.6 616.7 616.7 614.2 599.9 599.9
10 850.5 854.0 840.3 840.4 820.9 824.0
20 1319.9 1468.2 1315.2 1144.7 1256.2 1133.4
50 2634.3 2950.2 2623.1 2292.2 2569.2 2315.7
100 5260.2 5643.9 5267.2 4412.1 4525.8 4330.7

5 Computational experiments

A large set of instances from [2] is used for testing and MA proves its superiority over other
approaches (GA is the genetic algorithm alone and CP denotes the Constraint-based branch and
bound algorithm ran alone). Combined with the constraint programming search, MA is able to
find optimal solutions on many instances.

Three tables report the results on two sets of instances. Table 1 reports the Cmax average
values obtained after a maximum of 900 seconds or 10000 iterations without improvement of
the best solution. Probability of mutation (resp. CPSearch) has been set to 0.1 (resp. 0.0001).
One can note that results are comparable.

For the same parameters, Table 2 presents the deviation from the optimal solution (when
known) or from the best lower bound obtained during the search. Memetic algorithm performs
well especially for large instances.

Table 3 gives the CPU times observed during the search for the three algorithms. On many
instances the time limit of 900s is reached. MA performs quite well on type 1 instances.

6 Conclusion and future steps

These preliminary experiments are encouraging and proves that the approach is consistent.
Despite these results, it is necessary to improve both the quality and the CPU time observed.
We will also in the near future apply our approach on classical instances from Internet repository
for the hybrid flowshop where each job requires only one machine at each stage.

References

[1] Ph. Baptiste, C. Le Pape, and W. Nuijten. Constraint-Based Scheduling, Applying Constraint
Programming to Scheduling Problems, vol 39 of Intl Series In ORMS. Kluwer, 2001.

[2] C. Oğuz and M.F. Ercan. A genetic algorithm for hybrid flow-shop scheduling with multi-
processor tasks. Journal of Scheduling, 8(4):323-351, 2005.

3



Table 2: Deviation of Cmax value (in %)
Type 1 instances Type 2 instances

k n GA CP MA GA CP MA
2 5 0.29 0.00 0.00 1.23 0.00 0.00

10 0.00 0.00 0.00 10.45 9.33 9.36
20 0.44 2.59 0.66 9.63 12.90 9.34
50 0.63 2.79 0.49 5.33 9.29 4.70
100 0.15 1.96 0.07 2.67 5.30 1.77

5 5 1.35 0.00 0.00 1.44 0.00 0.00
10 1.64 0.00 0.00 3.71 1.92 1.60
20 3.49 10.85 2.78 7.83 20.78 7.15
50 0.59 5.30 0.51 4.90 13.61 4.35
100 2.50 5.19 2.33 10.67 14.89 10.12

8 5 4.15 0.00 0.00 2.38 0.00 0.00
10 9.38 10.32 8.02 9.32 6.80 7.24
20 5.69 17.98 5.32 17.26 28.52 16.02
50 2.17 14.42 1.71 15.62 29.62 16.87
100 2.02 9.49 2.18 18.85 21.97 16.64

Table 3: Comparing CPU times (in seconds)
Type 1 instances Type 2 instances

k n GA CP MA GA CP MA
2 5 598.8 0.03 0.8 586.3 0.02 0.7

10 900 0.05 0.9 900 91.19 763.1
20 900 450.54 450.4 900 648.35 541.2
50 900 540.69 454.9 900 725.09 629.8
100 900 451.62 458.8 900 900 900

5 5 900 0.04 1.1 900 0.04 1.7
10 900 60.55 541.6 900 411.13 843.6
20 900 900 634.6 900 900 900
50 900 721.31 467.8 900 900 900
100 900 812.03 551.7 900 900 900

8 5 900 0.11 2.2 900 0.06 1.2
10 900 386.8 720.4 900 560.7 900
20 900 720.88 721 900 900 900
50 900 900 816.1 900 900 900
100 900 900 865.1 900 900 900

4


