
ACO with Lookahead Procedures for Solving Set Partitioning and Covering
Problems

Broderick Crawford 1, 2, Carlos Castro 1

1 Departamento de Informática, Universidad Técnica Federico Santa María, Chile
2 Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Chile

broderick.crawford@ucv.cl, carlos.castro@inf.utfsm.cl

Abstract. Set Covering Problem and Set Partitioning Problem can model several real life situations.
In this paper we solve some benchmarks of them with Ant Colony Optimization algorithms and some
hybridizations of them with Constraint Programming techniques. The Lookahead mechanism allows
the incorporation of information on the anticipated decisions that are beyond the immediate choice
horizon. Computational results are presented showing the advantages to use additional mechanisms
to Ant Colony Optimization in strongly constrained problems like Set Partitioning Problem.

Keywords. Ant Colony Optimization (ACO), Forward Checking (FC), Full Lookahead (FLA), Set
Covering Problem (SCP), Set Partitioning Problem (SPP).

1 Introduction

Set Covering Problem (SCP) and Set Partitioning Problem (SPP) are two types of problems that can
model different real life situations [2, 9]. In this work, we solve some benchmarks of them with Ant Colony
Optimization (ACO) algorithms and some hybridizations of ACO with Constraint Programming techniques
like Forward Checking and Full Lookahead. There exist problems for which ACO is of limited effectiveness
[13]. Among them a prominent role is played by very strongly constrained problems. They are problems for
which neighborhoods contain few solutions, or none at all, and local search is of very limited use. Probably,
the most significant of such problems is the SPP. The best performing metaheuristic for SPP is a genetic
algorithm due to Chu and Beasley [5, 3]. There exist already some approaches applying ACO to the SCP.
In [1, 11], ACO has been used only as a construction algorithm and the approach has only been tested on
some small SCP instances. More recent works [10, 12] apply ACO to the SCP and use techniques to re-
move redundant columns and local search to improve solutions.

In this paper we explore the addition of a lookahead mechanism (usually used in complete techniques) to
the ACO algorithm. In Section 2, we describe the applicability of the ACO algorithm for solving SCP and
SPP. In Section 3, we present the basic concepts to adding Constraint Programming techniques to the two
basic ACO algorithms: Ant System (AS) and Ant Colony System (ACS). In Section 4, we present results
when applying these algorithms for solving standard benchmarks from Beasley`s ORLIB. Finally, in Sec-
tion 5 we conclude the paper and give some perspectives for future research.

2 Ant Colony Optimization for SCP and SPP

In the following description the reader is expected to be familiar with the problems and ACO algorithms
proposed in [7, 6]. ACO can be applied in a very straightforward way to the SCP. The columns are chosen
as the solution components and have associated a cost and a pheromone trail. Constraints say that each
column can be visited by an ant once and only once and that a final solution has to cover all rows. A walk
of an ant over the graph representation corresponds to the iterative addition of columns to the partial solu-

tion obtained so far. Each ant starts with an empty solution and adds columns until a cover is completed. A
pheromone trail and a heuristic information are associated to each eligible column. A column to be added is
chosen with a probability that depends of pheromone trail and the heuristic information. In this paper we
use a dynamic heuristic information that depends on the partial solution of an ant. It can be defined as the
quotient between the so called cover value, that is, the number of additional rows covered when adding one
column to the current partial solution, and the cost of column added [8]. In other words, the heuristic infor-
mation measures the unit cost of covering one additional row. An ant ends the solution construction when
all rows are covered. Figure 1 describes two basic ACO algorithms to solve SCP and SPP.

Fig1. ACO algorithms for SCP and SPP

In this work, we use two instances of ACO: Ant System (AS) and Ant Colony System (ACS) algo-

rithms, the original and most famous algorithms in the ACO family [8]. ACS improves the search of AS
using: a different transition rule in the constructive phase, exploting the heuristic information in a more rude
form, using a list of candidates to future labeling and using a different treatment of pheromone. ACS has
demonstrated better performance than AS in a wide range of problems [7].

3 ACO with Constraint Programming

Recently, some efforts have been done in order to integrate Constraint Programming techniques to ACO
algorithms [14]. Forward Checking (FC) seems to be the easiest way to prevent future conflicts. Instead of
performing arc consistency to the instantiated variables, it performs a restricted form of arc consistency to
the not yet instantiated variables. This reduces the search tree and the overall amount of work done. But it
should be noted that Forward Checking does more work when each assignment is added to the current par-
tial solution. Adding Forward Checking to ACO means that columns are chosen if they do not produce any
conflict with respect to the next column to be chosen. Forward checking checks only the constraints between
the current variable and the future variables. So, why not to perform full arc consistency that will further
reduces the domains and removes possible conflicts. This approach is called Full Lookahead (FLA) or
maintaining arc consistency. The advantage of look ahead is that it detects also the conflicts between future
variables and therefore allows branches of the search tree that will lead to failure to be pruned earlier than
with Forward Checking. Adding Full Lookahead to ACO means that columns are chosen using recursively
the same ideas that Forward Checking and so we detect conflicts before a solution is completed.

1 Procedure ACO_for_SPP
2 Begin
3 InitParameters();
4 While (remain iterations) do
5 For k := 1 to nants do
6 While (solution is not completed) do
7 AddColumnToSolution(election)
8 AddToTabuList(k);
9 For each Row f covered by k do
10 AddToTabuList(column that cover to f);
11 EndFor
12 EndWhile
13 EndFor
14 UpdateOptimum();
15 UpdatePheromone();
16 EndWhile
17 Return best_solution_founded
18 End.

1 Procedure ACO_for_SCP
2 Begin
3 InitParameters();
4 While (remain iterations) do
5 For k := 1 to nants do
6 While (solution is not completed) do
7 AddColumnToSolution(election)
8 AddToTabuList(k);
9 EndWhile
10 EndFor
11 UpdateOptimum();
12 UpdatePheromone();
13 EndWhile
14 Return best_solution_founded
15 End.

4 Experiments and Results

Table 1 presents results when adding FC and FLA techniques to the basic ACO algorithms for solving
standard benchmarks taken from the Beasley`s ORLIB. The first four columns present the problem code,
the number of rows, the number of columns, and the best known solution for each instance, respectively.
The remainder columns present the cost obtained when applying the algorithms. Considering several tests
and published experimental results [8, 12, 11] we use the following parameters for the algorithms: ? = 0.4,
number of iterations = 160, number of ants = 120, ß = 0.5, for ACS the list was = 500 (in scp41, scp42,
scp48, scp61, scp62, and scp63), for ACS Qo = 0.5. Algorithms were implemented using ANSI C, GCC
3.3.6, under Microsoft Windows XP Professional version 2002.

Table 1. Results (Cost obtained)

Problem Rows Columns Optimum AS AS+FC AS+FLA ACS ACS+FC ACS+FLA
sppnw39 25 677 10080 11670 11322 10722 10758 10545 11322
sppnw34 20 899 10488 13341 10713 10713 11289 10797 10713
sppnw26 23 771 6796 6976 6880 7192 6956 6880 6850
sppnw23 19 711 12534 14304 13932 13254 14604 12880 13400
scp41 200 1000 429 473 458 2115 463 683 842
scp42 200 1000 512 594 574 1990 590 740 752
scp48 200 1000 492 524 537 1952 522 731 752
scp51 200 1000 253 289 289 1975 280 464 526
scp61 200 1000 138 157 155 1081 154 276 352
scp62 200 1000 146 169 170 1004 163 280 352
scp63 200 1000 145 161 161 763 157 209 267

 The effectiveness of Constraint Programming is showed to the SPP and in some instances of SCP sol-
ving with AS+FC. The strongly constrained problem characteristic of SPP does the stochastic behavior of
ACO improved with FC techniques in the construction phase, so that almost only feasible solutions are
induced. In the original ACO implementation the SPP solving derives in a lot of unfeasible labeling of va-
riables, and many ants can not complete solutions. For SCP, the huge size of the search space and the re-
laxation of the constraints do original ACO algorithms work better than ACO with Constraint Programming
considering the same execution conditions.

5 Conclusions and Future Directions

Computational results confirm that the performance of ACO is possible to improve with some classes of

hybridization. In a restricted problem like SPP, ACO with Lookahead techniques showed an interesting
performance, we demonstrated that this integration improves the process, mainly with respect to success
costs instead running times. But the trade off in all cases is very convenient. The ACO metaheuristic can
produce good quality solutions to this class of problems if it is applied correctly.

Future versions of the algorithm can study the pheromone representation and will try to incorporate it
into look ahead techniques. Furthermore, considering that the ant´s solutions may contain redundant compo-
nents which can be eliminated by a fine tuning after the solution, then we will explore Post Processing pro-
cedures too, which consist in the identification and replacement of the columns of the ACO solution in each
iteration by more effective columns. Part of this involves the study of available local search techniques in
order to reduce the input problem and improve the solutions given by the ants.

References

1. D. Alexandrov and Y. Kochetov. The behavior of the ant colony algorithm for the set covering problem. In
Operations Research, pp 255–260. SV, 1999.

2. E. Balas and M. Padberg. Set Partitioning: A Survey. SIAM Review, 18:710–760, 1976.
3. J. E. Beasley and P. C. Chu. A genetic algorithm for the set covering problem. European Journal of Opera-

tional Research, 94(2):392–404, 1996.
4. M. J. Brusco, L. W. Jacobs, and G. M. Thompson. A morphing procedure to supplement a simulated annealing

heuristic for cost and coverage correlated set covering problems. Annals of Operations Research, 86:611–627,
January 1999.

5. P. C. Chu and J. E. Beasley. Constraint handling in genetic algorithms: the set partitoning problem. Journal of
Heuristics, 4:323–357, 1998.

6. M. Dorigo, G. D. D. Caro, and L. M. Gambardella. Ant Algorithms for Discrete Optimization. Artificial Life,
5:137–172, 1999.

7. M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative learning approach to the traveling sales-
man problem. IEEE Transactions on Evolutionary Computation, 1(1):53–66, 1997.

8. M. Dorigo and T. Stutzle. Ant Colony Optimization. MIT Press, USA, 2004.
9. A. Feo, G. Mauricio, and A. Resende. A Probabilistic Heuristic for a Computationally Difficult Set Covering

Problem. OR Letters, 8:67–71, 1989.
10. R. Hadji, M. Rahoual, E. Talbi, and V. Bachelet. Ant colonies for the set covering problem. In M. D. et al.,

editor, ANTS 2000, pp 63–66, 2000.
11. G. Leguizamón and Z. Michalewicz. A new version of Ant System for subset problems. In Congress on Evolu-

tionary Computation, CEC’99, pp 1459–1464, Piscataway, NJ, USA, 1999. IEEE Press.
12. L. Lessing, I. Dumitrescu, and T. Stutzle. A Comparison Between ACO Algorithms for the Set Covering Prob-

lem. In M. D. et al., editor, ANTS 2004, vol 3172 of LNCS, pp 1–12. SV, 2004.
13. V. Maniezzo and M. Milandri. An Ant-Based Framework for Very Strongly Constrained Problems. In M. D. et

al., editor, ANTS 2002, vol 2463 of LNCS, pp 222–227. SV, 2002.
14. B. Meyer and A. Ernst. Integrating ACO and Constraint Propagation. In M. D. et al., editor, ANTS 2004, vol

3172 of LNCS, pp 166–177. SV, 2004.

