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Abstract. Set Covering Problem and Set Partitioning Problem can model several real life situations. 
In this paper we solve some benchmarks of them with Ant Colony Optimization algorithms and some 
hybridizations of them with Constraint Programming techniques. The Lookahead mechanism allows 
the incorporation of information on the anticipated decisions that are beyond the immediate choice 
horizon. Computational results are presented showing the advantages to use additional mechanisms 
to Ant Colony Optimization in strongly constrained problems like Set Partitioning Problem. 
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1   Introduction 

Set Covering Problem (SCP) and Set Partitioning Problem (SPP) are two types of problems that can 
model different real life situations [2, 9]. In this work, we solve some benchmarks of them with Ant Colony 
Optimization (ACO) algorithms and some hybridizations of ACO with Constraint Programming techniques 
like Forward Checking and Full Lookahead. There exist problems for which ACO is of limited effectiveness 
[13]. Among them a prominent role is played by very strongly constrained problems. They are problems for 
which neighborhoods contain few solutions, or none at all, and local search is of very limited use. Probably, 
the most significant of such problems is the SPP. The best performing metaheuristic for SPP is a genetic 
algorithm due to Chu and Beasley [5, 3]. There exist already some approaches applying ACO to the SCP. 
In [1, 11], ACO has been used only as a construction algorithm and the approach has only been tested on 
some small SCP instances. More recent works [10, 12] apply ACO to the SCP and use techniques to re-
move redundant columns and local search to improve solutions. 

In this paper we explore the addition of a lookahead mechanism (usually used in complete techniques) to 
the ACO algorithm. In Section 2, we describe the applicability of the ACO algorithm for solving SCP and 
SPP. In Section 3, we present the basic concepts to adding Constraint Programming techniques to the two 
basic ACO algorithms: Ant System (AS) and Ant Colony System (ACS). In Section 4, we present results 
when applying these algorithms for solving standard benchmarks from Beasley`s ORLIB. Finally, in Sec-
tion 5 we conclude the paper and give some perspectives for future research. 

2   Ant Colony Optimization for SCP and SPP 

In the following description the reader is expected to be familiar with the problems and ACO algorithms 
proposed in [7, 6]. ACO can be applied in a very straightforward way to the SCP. The columns are chosen 
as the solution components and have associated a cost and a pheromone trail. Constraints say that each 
column can be visited by an ant once and only once and that a final solution has to cover all rows. A walk 
of an ant over the graph representation corresponds to the iterative addition of columns to the partial solu-



tion obtained so far. Each ant starts with an empty solution and adds columns until a cover is completed. A 
pheromone trail and a heuristic information are associated to each eligible column. A column to be added is 
chosen with a probability that depends of pheromone trail and the heuristic information. In this paper we 
use a dynamic heuristic information that depends on the partial solution of an ant. It can be defined as the 
quotient between the so called cover value, that is, the number of additional rows covered when adding one 
column to the current partial solution, and the cost of column added [8]. In other words, the heuristic infor-
mation measures the unit cost of covering one additional row. An ant ends the solution construction when 
all rows are covered. Figure 1 describes two basic ACO algorithms to solve SCP and SPP. 

 
 
 
 
 
 

 
 
 

 

 
 
 

 
Fig1. ACO algorithms for SCP and SPP 

 
In this work, we use two instances of ACO: Ant System (AS) and Ant Colony System (ACS) algo-

rithms, the original and most famous algorithms in the ACO family [8]. ACS improves the search of AS 
using: a different transition rule in the constructive phase, exploting the heuristic information in a more rude 
form, using a list of candidates to future labeling and using a different treatment of pheromone. ACS has 
demonstrated better performance than AS in a wide range of problems [7]. 
 
 
 
3   ACO with Constraint Programming 
 

Recently, some efforts have been done in order to integrate Constraint Programming techniques to ACO 
algorithms [14]. Forward Checking (FC) seems to be the easiest way to prevent future conflicts. Instead of 
performing arc consistency to the instantiated variables, it performs a restricted form of arc consistency to 
the not yet instantiated variables. This reduces the search tree and the overall amount of work done. But it 
should be noted that Forward Checking does more work when each assignment is added to the current par-
tial solution. Adding Forward Checking to ACO means that columns are chosen if they do not produce any 
conflict with respect to the next column to be chosen. Forward checking checks only the constraints between 
the current variable and the future variables. So, why not to perform full arc consistency that will further 
reduces the domains and removes possible conflicts. This approach is called Full Lookahead (FLA) or 
maintaining arc consistency. The advantage of look ahead is that it detects also the conflicts between future 
variables and therefore allows branches of the search tree that will lead to failure to be pruned earlier than 
with Forward Checking. Adding Full Lookahead to ACO means that columns are chosen using recursively 
the same ideas that Forward Checking and so we detect conflicts before a solution is completed. 
 
 
 

1 Procedure ACO_for_SPP 
2  Begin 
3   InitParameters(); 
4   While (remain iterations) do 
5    For k := 1 to nants do 
6     While (solution is not completed) do 
7      AddColumnToSolution(election) 
8      AddToTabuList(k); 
9      For each Row f covered by k do 
10      AddToTabuList(column that cover to f); 
11     EndFor 
12    EndWhile 
13   EndFor 
14   UpdateOptimum(); 
15   UpdatePheromone(); 
16  EndWhile 
17  Return best_solution_founded 
18 End. 

1 Procedure ACO_for_SCP  
2  Begin  
3   InitParameters();  
4    While (remain iterations) do  
5     For k := 1 to nants do  
6      While (solution is not completed) do  
7       AddColumnToSolution(election)  
8       AddToTabuList(k);  
9      EndWhile  
10    EndFor  
11    UpdateOptimum();  
12    UpdatePheromone();  
13   EndWhile  
14  Return best_solution_founded  
15 End.  
 



4   Experiments and Results 
 

Table 1 presents results when adding FC and FLA techniques to the basic ACO algorithms for solving 
standard benchmarks taken from the Beasley`s ORLIB. The first four columns present the problem code, 
the number of rows, the number of columns, and the best known solution for each instance, respectively. 
The remainder columns present the cost obtained when applying the algorithms. Considering several tests 
and published experimental results [8, 12, 11] we use the following parameters for the algorithms: ? = 0.4, 
number of iterations = 160, number of ants = 120, ß = 0.5, for ACS the list was = 500 (in scp41, scp42, 
scp48, scp61, scp62, and scp63), for ACS Qo = 0.5. Algorithms were implemented using ANSI C, GCC 
3.3.6, under Microsoft Windows XP Professional version 2002.  

Table 1.    Results (Cost obtained) 

Problem Rows Columns Optimum AS AS+FC AS+FLA ACS ACS+FC ACS+FLA 
sppnw39 25 677 10080 11670 11322 10722 10758 10545 11322 
sppnw34 20 899 10488 13341 10713 10713 11289 10797 10713 
sppnw26 23 771 6796 6976 6880 7192 6956 6880 6850 
sppnw23 19 711 12534 14304 13932 13254 14604 12880 13400 
scp41 200 1000 429 473 458 2115 463 683 842 
scp42 200 1000 512 594 574 1990 590 740 752 
scp48 200 1000 492 524 537 1952 522 731 752 
scp51 200 1000 253 289 289 1975 280 464 526 
scp61 200 1000 138 157 155 1081 154 276 352 
scp62 200 1000 146 169 170 1004 163 280 352 
scp63 200 1000 145 161 161 763 157 209 267 

 
     The effectiveness of Constraint Programming is showed to the SPP and in some instances of SCP sol-
ving with AS+FC. The strongly constrained problem characteristic of SPP does the stochastic behavior of 
ACO improved with FC techniques in the construction phase, so that almost only feasible solutions are 
induced. In the original ACO implementation the SPP solving derives in a lot of unfeasible labeling of va-
riables, and many ants can not complete solutions. For SCP, the huge size of the search space and the re-
laxation of the constraints do original ACO algorithms work better than ACO with Constraint Programming 
considering the same execution conditions. 
 
 
 
5 Conclusions and Future Directions 

 
Computational results confirm that the performance of ACO is possible to improve with some classes of 

hybridization. In a restricted problem like SPP, ACO with Lookahead techniques showed an interesting 
performance, we demonstrated that this integration improves the process, mainly with respect to success 
costs instead running times. But the trade off in all cases is very convenient. The ACO metaheuristic can 
produce good quality solutions to this class of problems if it is applied correctly. 

Future versions of the algorithm can study the pheromone representation and will try to incorporate it 
into look ahead techniques. Furthermore, considering that the ant´s solutions may contain redundant compo-
nents which can be eliminated by a fine tuning after the solution, then we will explore Post Processing pro-
cedures too, which consist in the identification and replacement of the columns of the ACO solution in each 
iteration by more effective columns. Part of this involves the study of available local search techniques in 
order to reduce the input problem and improve the solutions given by the ants. 
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