
Branch and Move 1

The Branch & Move algorithm:
Improving Global Constraints Support

by Local Search

Thierry Benoist

 Bouygues e-lab, 1 av. Eugène Freyssinet,
78061 St Quentin en Yvelines Cedex, France

tbenoist@bouygues.com

Abstract. Most global constraints maintain a support for their filtering algo-
rithm, namely a tuple consistent with both the constraint and current domains.
However, this highly valuable information is rarely used outside of the con-
straint. In this paper we propose a generic hybridization scheme that we tested
on a real-world application in the field of TV advertisement. The principle of
this Branch and Move approach is to use the support of the main global con-
straint of the problem as a guide for the branching strategy . The accuracy of this
oracle is enhanced by local search improvements of this support tuple at each
node of the search tree.

1. Introduction

Constraint propagation is based on infeasible values. The filtering algorithm of a
constraint aims at removing infeasible values from the domain of its variables, i.e. val-
ues belonging to no tuple of the relation consistent with current domains. When all
such inconsistent values are detected, the algorithm is said to be complete. In the past
few years, in order to perform more accurate filtering on rich n-ary constraints, several
global filtering algorithms have been developed usually based on OR polynomial algo-
rithms. Most of these global constraints maintain a feasible tuple consistent with cur-
rent domains of variables. When no such support tuple exists, the constraint fails
(detects a contradiction), otherwise it is used by the filtering algorithm. For instance
the reference matching of the AllDifferent constraints (Régin 1994) ensure the feasibil-
ity of the constraint, and the strongly connected component decomposition based on
this matching offers complete filtering. As more and more CP models are centred on a
few number of global constraints (often one), the central role played by global con-
straints points out the relevancy of considering their support. For instance con-
strained TSP, constrained Knapsack problems and constrained flow problems can be
respectively modelled with (in addition to problem specific constraints) TSP con-

Branch and Move 2

straints (Beldiceanu and E. Contejean 1994), Knapsack constraints (Trick 2001, T.
Fahle, M. Sellmann 2002) or flow constraints (Bockmayr et al. 2001, Benoist et al. 2002).

For such problems where a principal global constraint can be identified, we propose
a support-guided branching scheme and an associated cooperation between Con-
straint Programming and Local Search. We name this procedure Branch and Move.
and expose it in section 3, after the introduction of some definitions in section 2.

2. Definitions

Given K an ordered set and D = D1× D2×… Dn with Di⊆ K for all i∈[1,n] (domains of
variables), we define the following objects:
1. Constraint1: a constraint R is a relation on Kn (R ⊆ Kn).
2. Support set: the support set of relation R on D is supp(R,D) = R∩D. Omitting D, we

will note the support set of a constraint R as supp(R)=supp(R,D) with D equal to
current domains.

3. Support tuple: a support of R is a tuple x∈supp(R)
4. Constraint Satisfaction Problem: A constraint satisfaction problem on K is a triplet

(n,D,P) where P is a collection of constraints P={R1,R2….Rm} on Kn.
5. Solutions: Solutions of P are sol(P)= R1∩ R2∩ .. Rm∩D.
6. Potential: With δK a distance on K, we define the potential ∆(R,x) of constraint R

with respect to tuple x∈Kn as the L1 distance from x to the current support set of R.

∑
≤

∈
=∆

ni
iiK

Rsuppy
yxxR),(min),(

)(
δ (1)

Note that ∆(R,x) equals 0 if x∈supp(R) and +∞ if supp(R)=∅. This potential liter-
ally measures the distance to feasibility of a tuple x for constraint R. For a binary
constraint R involving two variables of domains D1 and D2, ∆(R,x) can be com-
puted by enumeration in complexity O(|D1|× |D2|). Moreover, the potential of a linear
constraint like ∑Xi ≥ X0, merely equals max(0, x0 - ∑xi) (slack variable). When a exact
computation of ∆(R,x) would be too costly, the distance to a feasible tuple of R
(“empirically close”) is an upper bound of ∆(R,x).

7. Corrective decision: A corrective decision for a conflicting pair R,x (a pair with
∆(R,x)>0) is a constraint A such that x∉A and A∩supp(R,D)≠∅. In other words it is
a constraint discarding x whilst consistent with R. A non-empty support for R is
sufficient to ensure its existence.

8. Neighbourhood: A neighbourhood structure for R is a function NR,D associating to
each support tuple x of R a subset NR,D(x) ⊂ supp(R,D) such that x∈ NR,D(x).

9. Selection: A function move defined on supp(R,D) is a selection function for
neighbourhood NR,D if and only if move(x) ∈ NR,D(x).

10.Improvement: Given a strict order < on Kn, move is an improving selection function
if and only if ∀ x, move(x)= x ∨ move(x) < x. For instance the potential order <P

1 Without loss of generality we extend constraints of smaller arity to relations on Kn.

Branch and Move 3

defined by x <P y ⇔ ∑R∈P∆(R,x) < ∑R∈P∆(R,y) is a strict order on Kn
. For optimiza-

tion problems a second criteria based on the objective function can be added.
11. Descent: A descent from x ∈ supp(R,D) is the iteration of an improving selection

function move until a fix point is reached2:
descent(x) à while (move(x) ≠ x) x := move(x), return x

Example with relations on Kn ={0,1,2}2:

• D1=D2={0,1}, R={(0,0),(0,1),(1,0),(2,2)},.
• The support set of R is supp(R,D)=R∩(D1×D2) = {(0,0),(0,1),(1,0)}
• (0,1) is a support of R (among the three possible ones).
• With R’={(0,0),(1,1),(2,2)} a second relation on {0,1,2}2, solutions of problem

P={R,R’} are sol(P)= R∩R’∩(D1×D2)={(0,0)}.
• The potential of R with respect to tuple (1,1) is ∆(R,(1,1))=1 because the clos-

est support is (0,1)∈supp(R,D) and δ((0,1),(1,1))=1.
• A possible corrective decision for pair R,(1,1) is A={(0,x) ∀ x} since (1,1)∉A

and A∩supp(R,D)={(0,0),(0,1)}≠∅.
• A possible neighbourhood for R is NR,D: (x,y) → {(x,0),(0,y),(x,y)}.
• For this simple neighbourhood, move: (x,y) → (0,0) is a possible selection

function since (0,0) belongs to the neighbourhood of any tuple of supp(R,D) .
• This selection function is strictly improving with respect to the potential or-

der <P, since (0,0) is the only solution of P.

3. Branching strategy and local search improvements

Let R0 be the main constraint of a problem P and x an element of its support. If the

potential of x with respect to all other constraints is null (∀R∈P, ∆(R,x)=0) then x is a
solution of P. Otherwise we decide to select among all additional constraints the one
with highest potential and to branch on an associated corrective decision3. More pre-
cisely we select R maximizing ∆(R,x) and A a corrective decision for R,x. Then we suc-
cessively consider sub problems P∪A and P∪A, with A=Kn-A (complementary deci-
sion). In order to make this branching strategy more efficient, the global appropriate-
ness of the support tuple x is improved by local search before each choice: according
to a neighbourhood structure suitable for constraint R0, a descent procedure is applied
on x. The resulting Branch and Move algorithm reads as follows:

2 such a fix point is necessarily reached since Kn is finite and <P is a strict order.
3 This approach is directly inspired from what can be done in a MIP branch and bound when a

continuous solution is found: a violated integrality constraint is selected, and a decision is
taken to bring the LP solver to modify this best continuous solution accordingly.

Branch and Move 4

solve(P) à // returns true if P is feasible, false otherwise
if not (propagate(P)) return false, // constraints propagation, returns false in case of inconsistency
else

let x := descent(getSupport(R0)), // improvement of the support tuple of R 0 by local search
Rmax := argmax{∆(R,x), R∈P} in // selection of the most unhappy constraint w.r.t . x

(if (∆(Rmax,x) = 0) return true // if x satisfies all constraints it is a solution of P
else

let A = selectCorrective(Rmax,x) in // selection of a corrective decision for Rmax
return (solve(P∪A) or solve(P∪A)) // recursive exploration

Fig. 1. The Branch and Move algorithm

It is important to note that the improvement of the support by local search is com-
pletely non-destructive: it has no impact at all on current domains since only the sup-
port tuple is modified. Instead of jumping to another node of equal depth, modifying
already instantiated variables as in Incremental Local Optimization [Caseau & Labur-
the 1999], we modify the values taken by remaining variables in the support tuple.
This absence of impact on current domains keeps the search tree complete whilst the
embedded problem-specific local search algorithm avoids wasting time in a costly sub
tree searching for a solution laying just a few moves far from current support tuple, or
trying the ensure the satisfaction of constraints that are consistent with a nearby sup-
port tuple. The latter case points out that the improvement process helps identifying
critical points: constraints remaining in conflict with the obtained support (“resisting
to local moves”) may be the most critical ones. The Branch and Move algorithm can
be compared to the Branch and Greed [Sourd & Chrétienne 1999] and Local Probing
techniques [Kamarainen & El Sakkout 2002] that are also based on heuristic computa-
tions at each node, searching for possible extension of the current partial assignement.
From a more general point of view these algorithms belong to the family of CP/LS hy-
brids [Focacci et al 2003], [Focacci & Shaw 2002].

From Local Search point of view, the whole process can be seen as the systematic
exploration of the support set of the main constraint. In this context, the initial im-
provement process is a standard greedy descent starting from the support tuple. Now
the local optimum escaping strategy significantly differs from tabu or simulated an-
nealing paradigms. Instead of changing the solution by non-improving moves, the
landscape itself is modified thanks to a corrective decision. The propagation of this
decision removes many tuples from the landscape, including the current one. The
filtering algorithm computes a new support tuple close to the discarded one. Then a
new greedy descent is applied from this new starting point to reach the closest local
optimum in this new filtered landscape. Since these decisions are embedded in a CP
search tree, a complete enumeration of possible landscapes is performed yielding to an
exact local search algorithm. When such a complete enumeration would be too costly,
the CP framework gives us the opportunity to use well-tried partial tree search tech-
niques developed in the last decade. Restricted Candidate Lists, discrepancy based
search, credit search, barrier limit, etc… are likely to guide the enumeration through a
diversified set of promising landscapes [Focacci et al 2003].

Branch and Move 5

For a more comprehensive description of Branch and Move principles, practice (on
the so-called TV-Break Packing Problem) and related work, we refer the reader to [Be-
noist & Bourreau, 2003].

References

N. Beldiceanu and E. Contejean, 1994. Introducing global constraints in CHIP. Mathematical
and Computer Modelling, 20(12):p 97-123.

T. Benoist, E. Bourreau, 2003. Improving Global Constraints Support by Local Search. In
COSOLV’03.

T. Benoist, E. Gaudin, B. Rottembourg, 2002. Constraint Programming Contribution to Bend-
ers Decomposition: A Case Study. In CP-02, pages 603-617.

A. Bockmayr, N. Pisaruk, A. Aggoun, 2001. Network Flow Problems in Constraint Program-
ming. In CP-01, pages 196-210.

Y. Caseau, F. Laburthe, 1999. Heuristics for Large Constrained Vehicle Routing Problems,
Journal of Heuristics 5 (3), Kluwer.

T. Fahle, M. Sellmann, 2002. Cost Based Filtering for the Constrained Knapsack Problem . In
Annals of Operations Research 115:73-94.

F. Focacci, F. Laburthe, A. Lodi, 2003. Local search and constraint programming. In Hand-
book of Metaheuristics pages 369-403, Kluwer.

F. Focacci and P. Shaw, 2002. Pruning sub-optimal seach branches using local search. In Pro-
ceedings of CP-AI-OR-02 pages 181-189.

O. Kamarainen, H. El Sakkout, 2002. Local Probing Applied to Scheduling. In CP02: 155-171.
U. Montanari, 1974. Networks of constraints: fundamental properties and applications to pic-

ture processing. Information Science, 7: 95-132.
J-C. Régin, 1994. A filtering algorithm for constraints of difference in CSPs. In AAAI 94,

Twelth National Conference on Artificial Intelligence, pages 362-367, Seattle, Washington.
F. Sourd, P. Chrétienne, 1999, Fiber-to-Object Assignment Heuristics. In European Journal of

Operational Research, 117.
M. Trick, 2001. A dynamic programming approach for consistency and propagation for knap-

sack constraints. Proceedings of CPAIOR-01 pages 113-124.

