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Providing robust scheduling algorithms that can solve a large variety of scheduling problems with
good performance is one of the biggest challenge of practical schedulers today. In this paper we
present a robust scheduling algorithm based on Self-Adapting Large Neighborhood Search and
apply it to a large panel of single-mode scheduling problems. The approach combines Large Neigh-
borhood Search with a portfolio of neighborhoods and completion strategies together with Machine
Learning techniques to converge on the most efficient neighborhoods and completion strategies
for the problem being solved. The algorithm is evaluated on a set of 20 scheduling benchmarks,
most of which are well established in the scheduling community. Despite the generality of the ap-
proach, for 16 benchmarks out of 20, its mean relative distance to state-of-the-art problem specific
algorithms is less than 4%. It even outperforms state-of-the-art problem-specific algorithms on 7
benchmarks clearly showing that our algorithm offers a valuable compromise between robustness
and performance.
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1 Introduction

There exists a large variety of scheduling problems and scheduling applications each of them fea-
turing different types of resources, different types of temporal network topology (jobs, precedence
network, Work Breakdown Structure), different objective functions, etc. Facing this variability, the
scheduling literature is huge. Most of it is about identifying or providing theoretical or experimental
results on a particular type of scheduling problem. For a given well identified problem, for instance
Job-shop scheduling or Resource-Constrained Project Scheduling, extremely efficient optimization
algorithms are available. Experimental evaluations are usually based on a set of specific bench-
marks for the problem being studied which also explains the large number of benchmarks available
to the scheduling community.

Still, when one is faced with a practical scheduling application the gap between the problem
to be solved and state-of-the-art problem specific algorithms is usually too large. It requires an
advanced expertise in scheduling to assess their potential applicability and efficiency on the real
problem and to adapt them when possible. It explains why actual scheduling applications tend to
use in-house heuristics rather than very efficient but often too specific optimization algorithms.

Providing robust scheduling algorithms that can solve a large variety of scheduling problems with
good performance is still a challenge. In this paper we present a robust scheduling algorithm based
on Self-Adapting Large Neighborhood Search. Section 2 describes the class of scheduling problem
we focus on which covers a large panel of single-mode scheduling problems. The algorithm itself
is presented in section 3. Section 4 reports an experimental study over 20 scheduling benchmarks
most of which are well established in the scheduling community (e.g. Job-shop, RCPSP). We
show among other things that for 16 benchmarks out of 20, the mean relative distance to state-of-



the-art problem-specific algorithms is less than 4% and that our approach, despite its generality,
outperforms the state-of-the-art on 7 benchmarks.

2 Model

Although the algorithm described in section 3 can easily be extended to handle complex scheduling
problems involving, for instance, multi-modes, resource minimal capacities or calendars, we focus
in this paper on its application and experimentation to a more restricted but still expressive class
of single-mode scheduling problems involving the following features:
• Non-preemptive activities of fixed or variable duration. A = {A1, ..., An} denotes the set of

activities of the schedule. Each activity can be specified a release date (minimal start time) and
a deadline (maximal end time).

• General temporal network. If xi and xj denote two time-points (start or end time of some
activity), any temporal constraint xi − xj ∈ [Dmin

ij , Dmax
ij ], Dmin

ij , Dmax
ij ∈ Z can be expressed.

• Capacity resources (unary, discrete, discrete reservoir) with maximal profiles. Discrete resources
are renewable resources of limited capacity, discrete reservoirs are resources of limited capacity
that can be produced and consumed by activities [22]. Each capacity resource Rk can be
associated a function Ck : Z → Z+ that represents its maximal capacity over time.

• State resources. State resources are resources whose state can change over time. Two activities
requiring a given state resource to be in a different state cannot overlap in time [23].

• Setup times on unary resources. A setup time on a unary resource Rk is specified by a setup
matrix Mk with Mk[i, j] ∈ Z+ denoting the minimal time that must elapse between the end of
Ai and the start of Aj when Aj is executed next to Ai on Rk.

• Cost expressed as a sum/max aggregation of semi-convex piecewise linear (SCPL) functions on
start, end and duration of activities. A semi-convex function [19] is a function such that, if
one draws a horizontal line anywhere in the Cartesian plane corresponding to the graph of the
function, the set of x such that f(x) is below the line forms a single interval. Some examples of
SCPL functions are depicted on Figure 1.
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Figure 1: Example of semi-convex piecewise linear functions

Most of the classical single-mode scheduling problems (e.g. Job-Shop, RCPSP) and classical
cost functions (e.g. makespan, earliness/tardiness costs, weighted number of late jobs, duration
minimization or maximization, etc) can be represented using this model.

3 Self-Adapting Large Neighborhood Search

3.1 Overview

Large Neighborhood Search (LNS) [30] is based upon a process of continual relaxation and re-
optimization: a first solution is computed and iteratively improved. Each iteration consists of a
relaxation step followed by a re-optimization of the relaxed solution. This process continues until



some condition is satisfied, typically, when a time limit is reached. In this paper, we generalize the
randomized LNS proposed in [15] along two directions: (1) the scope of the approach is dramatically
enlarged, now handling a wide variety of resource types and cost functions, and (2) the approach
is robustified by using portfolios of large neighborhoods and completion strategies in combination
with Machine Learning techniques to converge on the most efficient neighborhoods and completion
strategies for the problem being solved.

The overall framework of Self-Adapting LNS (denoted SA-LNS) is illustrated on Figure 2.
Each large neighborhood LNi and each completion strategy CSj in the portfolios are associated
a vector of parameters. In a parameter vector p = (p1, ..., pn), each parameter pk takes its values
in a finite set V k. The learning algorithm maintains two probability distributions prob(LNi) and
prob(CSj) on the sets of large neighborhoods and completion strategies and, for each parameter
pk, a probability distribution on its possible values in V k. At each cycle of the LNS, one large
neighborhood LNi together with a corresponding vector of parameter values Pi and one completion
strategy CSj with a corresponding vector of parameter values Qj are selected based on the current
probability distributions. LNi[Pi] is applied to relax the current best solution then, completion
strategy CSj [Qj ] is applied to re-optimize the relaxed solution. After this cycle, LNi and CSj ,
together with their respective parameter values Pi and Qj are rewarded according to the efficiency
of the cycle defined by the ratio r = ∆c/∆t where ∆c is the cost improvement if any (0 otherwise)
and ∆t is the cycle CPU time. This type of reward tends to favor neighborhoods and strategies that
quickly converge on good solutions. The reward increases the probability of the rewarded elements
being chosen according to a classical re-enforcement scheme: weightt+1 = (1− α) · weightt + α · r
with learning rate α ∈ (0, 1] being a parameter of the global approach.

In [11], the authors present an algorithm switching strategy that iteratively runs the whole set
of algorithms in the portfolio and adapts, at each cycle, their allocated running times depending on
their past results. SA-LNS learns the algorithm selection rather than the algorithm running times
which allows for a more fine-grain control of the search and avoids systematically running useless
algorithms. The overall framework is actually closer to the one recently described in [27] for Vehicle
Routing problems, the main difference being that the our approach also learns the parameter values
of each component of the LNS (neighborhoods, completion strategies). That way, it can be seen as
a pure black-box search without any parameter.
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Figure 2: Self-Adapting LNS overview

The sequel of this section describes the portfolios of large neighborhoods and completion strate-



gies. Note that the first solution is built using the same search strategy as the completion strategy
SetJustInTime described in section 3.3.

3.2 Large neighborhoods

The Large Neighborhoods portfolio currently consists of 3 neighborhoods. They are all based on the
initial generation of a Partial Order Schedule (POS) [28] constructed from a completely instantiated
solution where activities have fixed start times and end times. A POS is a directed graph G(A,
E) where the edges in E are precedence constraints between activities with the property that any
temporal solution to the graph is also a resource-feasible solution. Algorithms for transforming a
fully instantiated solution into a POS are described in [28, 15]. We extend this approach to state
resources and discrete reservoirs as sketched below.
• State resource. The POS P (Rk) of a state resource Rk contains all the edges Ai → Aj such

that activities Ai and Aj require incompatible states of Rk and Ai is executed before Aj in the
solution.

• Discrete reservoirs. The algorithm to generate a POS P (Rk) for discrete reservoirs works in two
steps. In the first step, a simple pegging heuristic chronologically creates a directed graph of
pegging arcs between producing activities and consuming activities: the first producer is pegged
to the first consumer and the pegged quantity is the minimum between the produced quantity
and the consumed quantity. The process continues until all consuming activities are provided
enough quantity. Let Pp(Rk) be the graph of pegging arcs. In the second step, the pegging arcs
are used to build a sub-model to ensure that the reservoir does not overflow: each pegging arc
is represented by an activity that requires the pegged quantity of a discrete resource R′

k whose
capacity is the maximum capacity of the reservoir. The algorithm described in [15] is applied
on this discrete resource to build a POS Ps(R′

k). The POS of the discrete reservoir P (Rk) is
then defined as: P (Rk) = Pp(Rk) ∪ Ps(R′

k).
The global POS P is defined as P = ∪kP (Rk). Redundant edges in P are removed. The goal of

the neighborhoods is to select a subset of activities that will be relaxed in the POS P . As described
in [15], the relaxed POS P ′ is obtained by removing from P all the edges involving at least one
selected activity and adding new edges to repair broken paths. The relaxed POS P ′ is then used
to enforce precedence constraints between activities before applying a completion strategy. The
portfolio contains the 3 following neighborhoods:
• RandomizedNHood[αR]. This is the neighborhood described in [15]. It randomly selects activities

with a probability αr, where αr is a self-adapting parameter of the neighborhood.
• TimeWindowNHood[αW , βW ]. Activities are first sorted by increasing start times. The selected

activities are those whose index in the sorted list belongs to [βW · n, (βW + αW ) · n] where n is
the number of activities of the problem, and αW and βW are two self-adapting parameters.

• TopologicalNHood[αT , βT ]. This neighborhood is similar to the previous one. It only differs in the
ordering of activities. The activities are sorted in the following lexicographic order: increasing
connected component1 (CC) indexes, increasing strongly connected component (SCC) indexes,
increasing start times. The domain of parameter αT (resp. βT ) is the same as parameter αW

(resp. βW ). This neighborhood tends to select activities belonging to the same CC (resp. SCC)
of the problem.

1(Strongly) Connected Components of the temporal network are computed from the initial set of temporal con-
straints in the problem. They convey important information about the temporal structuration of the problem (jobs,
Work Breakdown Structure, etc.).



3.3 Completion strategies

Currently, only one completion strategy SetJustInTime[γ] is used. This completion strategy ex-
plores a search tree with a maximal number of failures equal to γ · n where n is the number of
activities of the problem and γ is a self-adapting parameter. At the root node, this strategy solves
a linear relaxation of the problem that only takes into account activity durations, temporal con-
straints and a convexification of the SCPL functions of the cost. The optimal solution of this
relaxation gives indicative start and end times for each activity. The search is a generalization of
the SetTimes strategy recapped in [15]. It considers activities by increasing indicative start times
and tries to schedule them as close as possible to their indicative times. When a failure occurs,
the activity is marked ”unselectable” and will remain so until constraint propagation removes from
the current domain of the activity the start or end dates that were tried on the left branch. When
the objective is regular, this strategy boils down to SetTimes. At each LNS step, the completion
tries to find a solution that is not worse than the current best solution in term of cost value. If the
maximal number of failures is reached before such a solution is found, a new move is tried.

4 Experimental study

SA-LNS has been implemented on top of ILOG CP 1.1 using ILOG CPLEX 10.1 for the linear
relaxation of the SetJustInTime strategy. We report in this section a comparison of this implemen-
tation with state-of-the-art specialized algorithms on 20 scheduling benchmarks, most of which are
well established in the scheduling community. It is to be noted that for this experimental study,
we consider our method as a pure black-box: there is no tuning of the search for the different
benchmarks. The results are summarized2 on Table 1. When possible, we compare with the upper-
bounds (UB) found by the best specialized algorithm on each benchmark (column ”Reference UB”)
and try to use comparable time limits, otherwise we compare with the best known upper-bounds
(which may have been found by different algorithms) and use a time-limit which is a piecewise
linear function of the number n of activities, for instance 1800s on a 2GHz laptop for a problem
with 500 activities. Note that due to the number of benchmarks, we often had to select a subset
of instances. To ensure a fair comparison, these instances were randomly drawn. Column ”MRD”
measures the average relative distance to the reference upper-bound, a negative value means that
in average SA-LNS outperforms the reference algorithm(s). The number of selected instances, to-
gether with the number of improved upper bounds compared to the reference algorithm(s) is given
in the last column.

Over the 20 benchmarks, the worse average distance of SA-LNS is 11.40% on single-machine
problems with common due-date which can be considered as very reasonable for a generic approach
that do not exploit problem specificities. In fact, the two worse results are single machine problems
without any precedence constraint and SA-LNS currently does not perform any special treatment
for unary resources. Except for those two very specific scheduling benchmarks, SA-LNS is always
less than 9% away from the best performing approaches and for 16 benchmarks out of 20, the mean
relative distance is even less than 4%. This illustrates the exceptional robustness of the approach.
Moreover SA-LNS outperforms the state-of-the-art on 7 benchmarks which is remarkable given the
generality of the approach. For 9 benchmarks (all the ones for which the number of improved
upper-bounds with respect to the reference is positive but Flow-shop w/ E/T and Open-Shop)

2The detailed experimental protocol and results are available on scheduler.ilog.fr. FOR REVIEWERS: DE-
TAILED RESULTS WILL BE AVAILABLE FOR FINAL VERSION.



Problem type Benchmark Problem Reference MRD # Imp. UBs /
size UB # Instances

Trolley [36] 230-460 [17] −11.7% 15/15
Hybrid flow-shop [31] 200-1000 [31] −8.6% 19/20
Job-shop w/ E/T [3] 30-200 [3] −5.1% 32/48
Air traffic management [17] 2000 [17] −3.5% 1/1
Max. quality RCPSP [29] 30 [29] −2.4% NA/36003

Flow-shop w/ E/T [24] 30-400 [13] −2.3% 4/12
Cumulative Job-shop [25] 150-675 [15] −0.3% 27/864

Single proc. tardiness [18] 200-500 [18] 0.2% 0/20
Semiconductor testing [26] 400 [26] 0.4% 7/18
Open-shop [8, 35, 16] 64-400 [6] 0.7% 3/28
RCPSP w/ E/T [37] 30-50 [37] 1.1% 15/60
RCPSP [21] 120 Best PSPLIB 1.6% 0/6005

Shop w/ setup times [9] 50-200 [2] 2.3% 0/15
Job-shop [1, 34, 38, 35] 100-500 Best OR-Lib 2.8% 0/33
Air land [4] 10-50 [4] 3.5% 0/8
Flow-shop w/ buffers [35] 100-500 [7] 3.9% 14/30
Flow-shop [35] 100-500 Best OR-Lib 5.8% 0/22
Aircraft assembly [14] 575 [12] 8.7% 0/1
Single machine w/ E/T [10, 32] 50-200 [33] 10.3% 0/40
Common due-date [5] 100-200 [5] 11.4% 0/20

Table 1: Results of SA-LNS on 20 scheduling benchmarks

SA-LNS is able to improve some best known upper bounds ever reported.

5 Conclusion and future work

The Self-Adapting Large Neighborhood Search presented in this paper combines several ingredients
which are fundamental to its efficiency and robustness:
• Large Neighborhood Search: by freezing some features of a solution and focusing on re-optimizing

the unfrozen features the LNS framework provides a general and efficient traversal of the search
space. Compared with Tree Search, it avoids being stuck with wrong early decisions. It is
more flexible than Local Search for complex problems involving many types of constraints and
resources.

• Partial Order Schedules: in the context of LNS, POSs provide a very powerful way to inject
flexibility into the schedule while keeping interesting features from one solution to the other.
As shown, the concept can be extended to various types of resources.

• Neighborhoods: Taken individually, each of the neighborhoods described in the paper are fairly
robust (See for instance [15] for RandomizedNHood)

3Detailed reference UBs for each instance are not available.
411 of the best known UBs for this benchmark have been improved.
5The average deviation from the path-based lower bound is 32.4%. We estimate the average number of LNS cycles

to be slightly less than 50000 which would position SA-LNS in the top 7 best approaches for RCPSP among the 37
approaches reviewed in [20].



• Completion strategy: the SetJustInTime completion strategy uses a linear relaxation of the
problem and, doing so, has a global vision of the ideal position of activities in time would there
be no resource limitation. In the context of LNS where only a part of the POS is unfrozen, this
relaxation tends to be very informative as most of the resource constraints are still captured
by frozen precedence arcs of the POS. The branching scheme of the strategy allows to exploit
constraint propagation and better explore the bottom of the search tree which clearly is a plus
compared to more classical non-backtracking greedy algorithms.

• Learning: the re-enforcement learning scheme, although quite simple, ensures a quick conver-
gence on the most effective neighborhoods, completion strategies and their associated parameter
values. Learning is a key factor in the robustness of the approach.
On-going and future work mainly consist in extending SA-LNS to multi-mode scheduling prob-

lems, that is, scheduling problems that have a ”resource allocation” dimension (this also accounts
for optional activities, alternative resources, alternative recipes or routes, etc.) and to other types
of costs such as setup, resource usage or inventory costs.
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